Carbohydrates, lipids, proteins, and nucleic acids are organic molecules found in every living organism. These macromolecules are large carbon-based structures. Joining several smaller units, called monomers, together and then removing a molecule of water assemble the macromolecules. This reaction is called dehydration synthesis. Reversing the process and adding a molecule of water can disassemble the resulting polymer. The reversed process is called hydrolysis.

Simple carbohydrates are made of carbon, hydrogen and oxygen atoms in a 1:2:1 ratio. This means that for every carbon atom present in the carbohydrate there are two hydrogen atoms and one oxygen atom present. The monomers for carbohydrates are referred to as monosaccharides. When many monosaccharides are chained together the resulting molecule is called a polysaccharide. Carbohydrates are used by living organisms as an important source of energy. Common examples of monosaccharides include glucose, fructose, galactose, ribose, and deoxyribose. Sucrose or table sugar, and lactose, the sugar found in milk are double sugars made from two monosaccharides. Important polysaccharides include cellulose, starch, and chitin.

Lipids are also made of carbon, hydrogen and oxygen but the ratio of carbon, hydrogen, and oxygen is not 1:2:1. Instead, lipids have a much higher number of carbons and hydrogens with few oxygen atoms present. Lipids are biological-organic compounds that do not dissolve in water. The nonpolar bonds that form between the carbon and hydrogen atoms of a lipid cause them to be hydrophobic, or water-repellent, molecules. This explains why water and oil do not mix. The large number of carbon to hydrogen bonds also serves to make lipids energy rich storage molecules. One gram of lipid stores twice as much energy as one gram of a carbohydrate. Lipids from animals are referred to as fats and are solids at room temperature, while those found in plants are referred to as oils, which are liquids at room temperature. Fats and oils are triglycerides, which are composed of a glycerol and three fatty acid molecules. One important relative of triglycerides are the phospholipids. Phospholipids differ in structure from regular triglycerides in that phospholipids are made of a glycerol and two fatty acids. A charged phosphate group replaces the third fatty acid. This arrangement makes phospholipid molecules have both hydrophilic and hydrophobic regions. This feature makes phospholipids an ideal structural component of the plasma membrane of cells. Steroids are another significant group of lipids. They differ in structure because the carbon atoms are arranged in four rings. Examples of steroids include cholesterol, estrogen, testosterone and morphine.

Proteins are made of monomers called amino acids, which are composed of atoms of carbon, hydrogen, oxygen and nitrogen. Proteins serve as the major building blocks of organisms. Proteins are large complex molecules that combine to form various components of living organisms such as muscle fibers, enzymes, and hemoglobin. Proteins are made of specific sequence of amino acids. A string of amino acid monomers joined together by peptide bonds is called a polypeptide.

PURPOSE
This lab activity provides an opportunity for the development of skills involved in chemically testing for the presence of the carbohydrates, lipids and proteins found in food samples. You will learn how to test for the presence of proteins using the Biuret test, to test for the presence of monosaccharides using the
Benedicts test, to test for the presence of starches using Lugol’s solution and to detect the presence of lipids using Sudan III. Once familiar with the detection techniques, you will apply those techniques to a slurry that has been made by blending a complete Happy Meal™. Using the skills that you have developed you should be able to determine which organic compounds are present in the slurry.

MATERIALS

- McDonald’s Happy Meal™ McMush slurry
- gelatin solution
- glucose solution
- starch solution
- vegetable oil
- 2 beakers or plastic cups
- Benedict’s solution in dropper bottle
- 6-8 test tubes
- 50 mL graduated cylinder
- 2 test tube holders
- hot water bath
- Biuret Reagent in dropper bottle
- Sudan III in dropper bottle

Safety Alert

1. Goggles and aprons should be worn at all times during this lab investigation.
2. Point test tubes away from all people when heating samples.
3. Handle hot test tubes with test tube clamps.

PROCEDURE

PART I: TESTING FOR MONOSACCHARIDES

1. Benedict’s solution can be used to detect the presence of monosaccharides. In the presence of a monosaccharide like glucose, Benedict’s solution will change color from blue to orange when heated. Place 5 mL of the glucose solution into your test tube.

2. Add 3 mL of Benedict's solution.

3. Using a test tube holder, place the tube in a beaker of boiling water and boil for five minutes or until a color change to orange occurs.

4. Record the color of the solution in Data Table 1.

5. Rinse out your test tube and record your results for the glucose test in Data Table 1.

PART II: TESTING FOR STARCHES

1. Lugol’s solution can be used to test for the presence of the polysaccharide or starch. In the presence of starch, the Lugol’s solution will change color from amber to a dark blue. Place 5 mL of the starch solution into your test tube.

2. Add 5 drops of Lugol’s iodine solution. Observe the change in color.
3. Rinse out your test tube and record your results for the starch test in Data Table 1.

PART III: TESTING FOR PROTEINS
1. Biuret’s reagent can be used to test for the presence of protein. Place 5 mL of the gelatin solution into your test tube.

2. Add 10 drops of Biuret’s reagent. The gelatin is a protein-rich solution and will test positive for the presence of protein. Biuret’s reagent will change color from blue to blue-violet in the presence of protein.

3. Rinse out your test tube and record your results for the protein test in Data Table 1.

PART IV: TESTING FOR LIPIDS
1. Sudan III can be used to detect the presence of lipids. In the presence of a lipid-rich solution and water, Sudan III will diffuse through the solution producing an orange-pink color. Add 5 mL of water and 5 mL of oil to a clean test tube.

2. Add 5 drops of Sudan III to the test tube. Observe the results.

3. Rinse out your test tube and record your results for the lipid test in Data Table 1.

PART V: TESTING THE McMUSH SLURRY OF unknowns
1. Using the Benedict’s solution test and the procedure described in Part I, determine whether or not the McMush slurry contains any monosaccharides and record your findings in Data Table 2.

2. Using the Lugol’s solution and the procedure described in Part II, determine whether or not the McMush slurry contains starch. Record your findings in Data Table 2.

3. Using the Biuret’s test for protein and the procedure described in Part III, test the McMush slurry to determine whether or not protein is present. Record your findings in Data Table 2.

4. Using the Sudan III test and the procedure described in Part IV, determine whether or not the McMush slurry contains lipids. Record your findings in Data Table 2.
McMush Lab
Testing for the Presence of Macromolecules

DATA AND OBSERVATIONS

<table>
<thead>
<tr>
<th>Data Table 1: Positive Tests Performed on Knowns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Performed</td>
</tr>
<tr>
<td>Benedict’s Test</td>
</tr>
<tr>
<td>Lugol’s Test</td>
</tr>
<tr>
<td>Biuret Test</td>
</tr>
<tr>
<td>Sudan III</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Table 2: McMush Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Performed</td>
</tr>
<tr>
<td>Benedict’s Test</td>
</tr>
<tr>
<td>Lugol’s Test</td>
</tr>
<tr>
<td>Biuret Test</td>
</tr>
<tr>
<td>Sudan III</td>
</tr>
</tbody>
</table>

CONCLUSION QUESTIONS

1. How are monomers and polymers different?

2. What are the monomers for each of these macromolecules?
 a. Carbohydrates-___________
 b. Lipids-_______________
 c. Proteins-_____________

3. Circle any of the following compounds that would be classified as carbohydrates.
 a. amino acids e. fructose
 b. triglycerides f. hemoglobin
 c. glucose g. chitin
 d. enzymes h. starch
4. If you were given an unknown food sample and asked to identify its contents, which test would you use to determine the presence of
 a. Lipids-
 b. Proteins-
 c. Glucose-
 d. Starch-

5. Which macromolecule groups were found in the McMush slurry?

6. What portion of the Happy Meal may have provided each of these macromolecules?
 a. Lipids-
 b. Proteins-
 c. Glucose-
 d. Starch-

7. Jonathan and Molly performed a similar lab except that in their lab they tested a slurry made from crackers. Their results show that crackers contain both protein and fat. After checking the cracker package, the students were surprised to find that protein and fat are not listed on the nutritional label. No other groups in their class have results that show protein and fat present in the sample. Describe three factors that could contribute to their erroneous results:

8. Predict which macromolecules should be present in the following food substances and indicate which test you would apply in order to detect the presence of that macromolecule. You may need to consult additional resources.

<table>
<thead>
<tr>
<th>Food Substance</th>
<th>Predicted Macromolecule</th>
<th>Test to be used</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Potato juice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Cracker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Egg white</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Honey</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9. Design and describe an experiment to test for the presence of carbohydrates, lipids, and proteins in a taco.